Emerensiana Badhe

by Unitri Press

Submission date: 23-Aug-2022 11:50PM (UTC-0400)

Submission ID: 1886244579

File name: Emerensiana_Badhe.docx (104.93K)

Word count: 2915

Character count: 17676

PRA RANCANG BANGUN ARANG AKTIF DARI BRANGKASAN JAGUNG DENGAN KAPASITAS 3.900 TON/TAHUN MENGGUNAKAN ALAT UTAMA MIXER

SKRIPSI

TEKNIK KIMIA

Oleh : EMERENSIANA BADHE Nim: 2015510051

ABSTRAK

Karbon aktif adalah karbon yang telah diolah karena kemampuannya menyerap cairan. Karbon aktif banyak digunakan untuk penyerapan dan secara universal memiliki kapasitas yang cukup untuk menjebak zat atau senyawa yang dapat mengubah bentuk penyerapan, dilihat dari ukuran volume pori yang kecil dan luas permukaan yang dipilih. Karbon aktif memiliki luas permukaan 250-3000 m2/gram. Arang dapat dibuat dari limbah pertanian, limbah kayu berkarbon menggunakan proses pirolisis.

Pada 30%, batang jagung adalah limbah padat terbesar yang dihasilkan oleh pertanian. Limbah digester jagung dapat diolah menjadi karbon aktif ramah lingkungan sebagai biosorben, meningkatkan nilai kualitas ekonomis bahan, dan pra-olahan karbon aktif dari digester jagung berkapasitas 3.900 ton/tahun. Berdasarkan analisis ekonomi menggunakan mixer utama, desain awal untuk membangun karbon aktif dari kompor jagung dapat ditentukan secara ekonomis sebagai berikut. Jumlah Investasi (ROIAT): 54%, Time to Pay (POT): 1,69 tahun, Break Event Point (BEP): 40,56%, Internal Rate of Return (IRR): 19,08%

Kata-kata kunci: Arang aktif, Pirolisis, Brangkasan Jagung, NaCl.

PENDAHULUAN

1.1 LATAR BELAKANG

Perkembangan dunia saat ini berarti dunia industri dan ilmu pengetahuan dan teknologi juga telah berkembang, begitu pula Indonesia. Dengan berkembangnya industri dan kemajuan teknologi, kebutuhan penggunaan karbon aktif dalam industri semakin meningkat. Ini termasuk masker, tembakau, minuman dan makanan, penggunaan air, minyak bumi, kimia, farmasi, pendingin, dan otomotif. Industri (Austin, 1984). Selanjutnya, menurut Kementerian Lingkungan Hidup dan Kehutanan (LHK), pada tahun 2016 terdapat lebih dari 140 sungai di 34 provinsi, di mana 73,24% di antaranya tercemar. Untuk menjernihkan air sungai yang tercemar, digunakan karbon aktif untuk menyerap senyawa beracun yang kotor.

Karbon aktif dapat digunakan dalam berbagai industri seperti farmasi, makanan, dan pengolahan air (penjernihan air). Sekitar 70% karbon aktif dapat digunakan untuk pemurnian minyak kelapa, bidang farmasi dan kimia. Karena kapasitas adsorpsinya yang tinggi, karbon aktif juga dapat digunakan untuk mereduksi polutan, terutama senyawa fenolik. Tangkai jagung merupakan residu dari tanaman pertanian yang saat ini diproduksi, dan komposisi kimia dari batang jagung adalah krignoselulosa: 39-47% selulosa, 27%-32% hemiselulosa, dan 3%-3% hemiselulosa, 5% lignin. Namun, kandungan selulosa dan lignin yang tinggi dari bahan organik ini menjadi kendala utama karena proses dekomposisi secara alami lambat. Sitohang, Rivika Fuari (2017)

Brangkasan merupakan sumber utama pemotongan jagung dan banyak dijumpai di sawah dan ladang petani, ditimbun dan tersebar di permukaan tanah untuk dibawa pulang oleh masyarakat secara gratis (gratis). Seminar Inovasi Teknologi Pertanian Nasional (2013)

1.2. Manfaat Produk(Karbon)

Menyerap dan memurnikan bau, rasa, warna, klorin, klorin (CaCO3), logam berat dan mengurangi cacat dalam pengolahan air. Pengolahan emas untuk menyerap konsentrasi emas (bijih) berupa carbon in pulp (CIP), carbon in leaching (CIL), carbon in clear solution (CIC) biasanya 8-25 mesh kelapa yang diperoleh dari tempurung kelapa. Pencegahan bau gas, bau, asap dan racun. Pengolahan limbah untuk menyerap zat berbahaya (B3), yaitu penyerapan sianida yang terkandung dalam limbah industri sintetis (akrilonitril), petrokimia, baja, pertambangan, pelapisan logam elektronik elektroplating dengan merendam karbon aktif

dalam larutan (Co2+ (0,5%)). Ini akan menyerap 82% sianida dalam waktu 2 jam. Merkuri/Hg, Kadmium/Cd, Timbal/Pb/Kromium/Cr diproduksi untuk menyerap logam berat. Pemurnian udara dalam ruangan dari uap air kering, bau/kandungan gas beracun, seperti mobil, ruangan dingin, botol obat, perangkat yang perlu dilindungi dari proses karat, dll. Dalam industri farmasi dan makanan, filter, penghilang, warna, bau, Rasa makanan yang lebih buruk di sektor perminyakan digunakan sebagai bahan baku untuk pemurnian bahan baku dan produk antara.

1.2. Sifat Bahan Baku Utama

a. Brangkasan Jagung

Brangkasan Jagung memiliki komposisi kimia diantaranya adalah selulosa, hemiselul osa,lignin,abu,pentosa dan air dengan persentase komposisi dapat dilihat tabel 1.1 dibawah ini

Tabel 1.1 Komposisi Kimia Brangkasan Jagung

Komponen	Persentase(%)
Selulosa	39-47
Hemiselulosa	27-32
Lignin	3-5
Abu	4
Air	2

Sumber: Sitohang, Rivika Fuari (2017)

Selain sifat kimia,brangkasan jagung juga memiliki sifat fisika. Berikut ini adalah sifat fisika brangkasan jagung

b. Sifat fisika brangkasan jagung

kepadatan massal Tidak berbau dan tidak berwarna Mudah terbakar dan meledak saat terkena panas eksternal Kebocoran dapat terjadi karena larut dalam beberapa logam Jika terjadi kebocoran, secara spontan dapat menyala dan nyala hidrogen sangat panas dan tidak terlihat dengan mata telanjang.

c. Bahan Pembantu (NaCl : Activator)

Natrium klorida (NaCl) adalah garam padat (bubuk kristal padat) dengan sedikit bau, kepadatan 1,13 g/ml, rasa asin, warna putih dan titik didih 14130 °C (2575,40F).), dengan titik leleh 8010C (1473.80F), garam ini sedikit larut dalam air dingin dan panas, gliserol dan

amonia, praktis tidak larut dalam asam klorida dan praktis tidak larut dalam alkohol (www.sciencelab.com). Ditampilkan Tabe

Tabel 1.2 Sifat Fisika NaCl

Komponen	Keterangan
Keadaan fisik	Padat (Bubuk Kristal Padat)
Bau	Sedikit
Densitas	1,13 gr/ml
Rasa	Asin (Saline)
Warna	Putih
Titik didih	1413 ° C (2575,4 ° F)
Titik lebur	801 ° C (1473,8 ° F)
Kelarutan	Mudah larut dalam air dingin, air panas, gliserol, amonia dan tidak larut dalam Asam hidroklorik.
	Sangat sedikit larut dalam alcohol

Sumber: www.science-lab.com

NaCl memiliki sifat tidak mudah terbakar dan tidak meledak pada pH = 7 (netral), memiliki berat molekul 58,44 g/mol, tidak beracun, dan memiliki koefisien Baret spesifik 2,165 (www.sciencelab.com MSDS). sesuai tabel 1.3 di bawah ini

Tabel 1.3 Sifat Kimia NaCl

Komponen	Keterangan
Mudah terbakar	Tidak mudah terbakar
Mudah meledak	Tidak mudah meledak
Ph	7 (netral)
Volatilitas	Tidak tersedia.
Beracun	Tidak beracun
Berat Molekul	58,44 g / mol
Berat Jenis	2,165 (Air = 1)
Ionicity (dalam Air)	Tidak tersedia.

Sumber:((www.science-lab.com MSDS)

1.3 PRODUK

a. Arang Aktif

Arang merupakan padatan berpori yang mengandung 85-95% karbon dan dihasilkan dari bahan berkarbon dengan pemanasan pada suhu tinggi (Erika et al, 2014), merupakan bahan padat yang berkualitas tinggi dan merupakan hasil pembakaran dengan proses pirolisis. Poripori karbon aktif sebagian tertutup oleh hidrokarbon, tar dan senyawa organik lainnya.

Komponennya adalah gabungan karbon, abu, air, nitrogen, dan belerang, tetapi karbon aktif bersifat hidrofobik, sehingga molekul karbon aktif tidak dapat bergabung dengan molekul air. Karbon aktif merupakan senyawa karbon amorf yang berasal dari arang yang telah diolah dengan proses pirolisis untuk memperoleh luas permukaan yang lebih besar. Di sisi lain, menurut Rahmawati (2006), karbon aktif diaktifkan dengan cara merendamnya dalam bahan kimia atau menyuntikkan uap panas ke dalam bahan dan memiliki luas permukaan 300-2000 m2/g. zat.

Tabel 1.4 Sifat Arang Aktif

Komposisi	Persentase (%)
Karbon	85-95
Air	5-15
Abu	2-3

Sumber:Wu(2004)

1.4 .1 Karakteristik Arang Aktif:

Rumus molekulnya : C

Bentuk : granular dan powder

Berat molekul : 12,01 g/molTitik lebur : $350^{\circ}\text{C} (6332^{\circ}\text{F})$ Suhu kritis : $6810^{\circ}\text{C} (12290^{\circ}\text{ F})$

Luas permukaan dalam : 929 m²/gr

 $\begin{array}{ll} \mbox{Kelarutan dalam air} & : (20^{o}\mbox{C}) \mbox{tidak larut} \\ \mbox{Bulk density} & : 150-440 \mbox{ kg/m}^{3} \\ \end{array}$

Ini hitam, tidak berasa dan tidak berbau, dan jauh lebih menyerap daripada karbon inert. Arang, yang mengandung 85-95% karbon, dibuat dengan memanaskan bahan berkarbon hingga suhu tinggi. Selama pemanasan, ini mencegah kebocoran udara di ruang pemanas dan mencegah bahan yang mungkin mengandung karbon hanya hangus dan tidak teroksidasi.

Karbon aktif adalah arang yang telah diolah memiliki daya serap/adsorpsi yang tinggi terhadap zat-zat yang berbentuk larutan atau uap. Karbon aktif banyak digunakan sebagai adsorben, umumnya dengan kemampuan yang besar untuk menyerap dan menghilangkan bau, rasa dan warna dari pengotor organik. Ketika senyawa dan kotoran lain dikeluarkan dari rongga atau pori-pori karbon aktif, luas permukaan dan pusat karbon aktif meningkat, meningkatkan kapasitas adsorpsinya. (Munawar, 2004)

1.4.2 Spesifikasi Karbon Arang

Tidak bisa mengikat bahan kimia seperti alkohol, glikol, ammonia, logam, dan inorganic, seperti litium, sodium, besi, arsenic, flourin dapat mengadsorbsi iodine sangat baik.

Arang aktif mengandung 5-15% air,2-3% abu ,dan sisanya terdiri dari karbon

Arang aktif berbentuk butiran

Arang aktif adalah suatu bahan berpori

Arang aktif berbentuk arang

Iodine number 750-900mg/gr

1.5 Kapasitas Produksi

Dalam mendirikan pabrik diperlukan suatu perkiraan kapasitas produksi agar produk yang dihasilkan sesuai dengan permintaan dan bahan bakunya. Berdasarkan Tabel 1.5 maka pabrik layak didirikan di Kota kabupaten tuban, provinsi Jawa Timur dengan peluang jumlah bahan baku yang selalu tersedia dan dekat dengan bahan baku.

1.6 PEMILIHAN PROSES

Proses seleksi yaitu pemilihan proses pirolisis untuk menghasilkan arang dan pemilihan proses aktivasi untuk menghasilkan karbon aktif, didasarkan pada pemilihan karbon aktif dari penyimpanan jagung untuk mencapai hasil ekonomi dan lingkungan yang maksimal. Ini adalah sudut pandang teknis. Berbagai proses dekomposisi termal dan proses aktivasi dan seleksinya dijelaskan di bawah ini.

1.6.1 Macam-macam Proses Pirolisis

Proses pirolisis biasanya dibagi menjadi tiga jenis: pirolisis lambat, pirolisis sedang-cepat dan pirolisis cepat. (Bridgewater, 2006). Menurut Sohi dari Prayogo et al. (2012) Namun selain ketiga jenis pirolisis tersebut di atas, terdapat jenis pirolisis yang lain, yaitu gasifikasi. Jenis

proses dan produk pirolisis tergantung pada kondisi operasi dijelaskan di bawah ini. pirolisis lambat

a. Pirolisis lambat

Proses pirolisis yang menggunakan suhu rendah antara 400 °C dan 500 °C dan menggunakan waktu pemanasan yang lebih lama (yaitu > 15 menit) dibandingkan jenis proses pirolisis lainnya. Produk utama dari proses ini adalah padatan (biochar). Proses pirolisis ini menghasilkan lebih banyak padatan (biochar) dibandingkan dengan pirolisis sedang, pirolisis cepat dan gasifikasi yang mencapai 35%. Cairan yang dihasilkan (bio-oil) menyumbang 30%, air yang dihasilkan menyumbang 70% dan gas yang dihasilkan (syngas) menyumbang 35%. Listrik yang tersedia untuk pirolisis lambat adalah tungku atau LPG, sedangkan pirolisis sedang, pirolisis cepat dan gasifikasi membutuhkan penggunaan listrik. Slow Pyrolysis masih menggunakan teknologi rendah, sehingga biayanya lebih murah. (Bridgwater, 2006, dan Soni dalam Prayogo et al., 2012).

b. Pirolisis Menengah

Pirolisis sedang adalah pirolisis menggunakan suhu sedang, yaitu 500 o C sampai 600 o C, dan waktu pemanasan sedang dibandingkan dengan pirolisis jenis lain mulai dari 5 sampai 15 menit. Produk utama yang dihasilkan dalam proses ini adalah cairan (bio-oil). Proses pirolisis intermediate menghasilkan 25% padatan (biochar), 50% cairan (biooil), 50% air, dan 25% gas (syngas). Jenis pirolisis yang dipanaskan dengan listrik ini menggunakan teknologi tinggi atau teknologi canggih dan memiliki biaya terkait yang lebih tinggi daripada pirolisis lambat (Bridgwater, 2006 dan Soni dalam Prayogo et al., 2012).

1.6.2 Seleksi Proses

Pemilihan proses perlu dilakukan untuk memperoleh proses yang sangat optimal baik teknis maupun ekonomis dari berbagai macam proses yang ada,proses tersebut akan diuraikan kondisi Tabel 1.6 perbandingan antara proses pirolisis lambat, pirolisis menengah, pirolisis cepat dan gasifikasi.

Tabel 1.6

Perbandingan Jenis-jenis Proses Pirolisis

No	Parameter	Pirolisis	Pirolisis	Pirolisis	Gasifikasi
		Lambat	Menengah	Cepat	
1.	Suhu	400°C-500°C	500°C-	600°C-	>800°C
			600°C	700°C	

2.	%yield	35%	25%	12%	10%
	biochar	30			
3.	Teknologi	Low-Tech	High-tech	High-tech	High-tech
4.	Biaya	Murah	Mahal	Mahal	Mahal
5.	Pemanas	Listrik,Tungk	Listrik	Listrik	Listrik
		u			

Sumber: diolah dari Bridgwater (2006) dan Sohi dalam Prayogo dkk (2012)

Melihat parameter pada Tabel 1.7, dapat ditentukan bahwa proses yang digunakan dalam perencanaan produksi karbon aktif dari brangkasan jagung adalah proses pirolisis lambat mengingat: Suhu yang dibutuhkan untuk proses pirolisis lambat adalah rendah (400 °C sampai 500 °C) dibandingkan dengan persyaratan suhu proses (>500 °C) untuk pirolisis sedang, pirolisis cepat dan gasifikasi, dan rendemen arang adalah 35. % lebih tinggi dari pirolisis cepat atau pirolisis gasifikasi.

Aktivasi Fisika

Aktivasi fisika adalah proses pemutusan rantai karbon dari senyawa organik menggunakan panas, uap dan CO2. Aktivasi fisik terjadi dengan memanaskan arang yang dipanaskan hingga suhu 800-900 °C dalam tungku. Tahap aktivasi fisik sangat sederhana. Artinya, pembakaran atau oksidasi oleh udara pada suhu tinggi. Reaksi ini eksotermik dan sulit dikendalikan. Pemanasan dengan uap atau CO2 pada suhu tinggi merupakan reaksi endotermik, sehingga lebih mudah dikontrol dan paling umum digunakan. Aktivasi dengan CO2 lebih mahal daripada aktivasi kimia dengan reagen. Dari kedua metode aktivasi tersebut tidak ditambahkan zat pengaktif, hasil karbon aktif lebih sedikit, dan bobot karbon aktif tidak terpengaruh.

1.7.1 Proses Aktivasi

Dapat disimpulkan perbandingan antara aktivasi kimia dan aktivasi fisika untuk proses aktivasi arang pada tabel di bawah ini :

Tabel 1.7

Perbandingan Metode Aktivasi Kimia dan Aktivasi Fisika

Komponen	Aktivasi Kimia	Aktivasi Fisika
Suhu	600-700 °C	800-900°C

Tahap	Perendaman dan Pemanasan	Pemanasan dengan uap dan	
Aktivasi	(one step activation)	gas CO ₂	
Aktivator	Reagen	Gas	
Teknologi	Low-tech	High-tech	
Biaya	Murah	Mahal	
Proses	Lama karena ada tahap perendaman	Cepat karena hanya tahap pemanasan	
Arang aktif	Hasil lebih banyak (25-35 %)	Hasil lebih sedikit (10 -25%)	

Sumber: Sembiring M., dkk ST,(2003) dan Dabrowski et al., (2005)

Berdasarkan hal di atas, metode aktivasi kimia dipilih sebagai metode aktivasi karbon aktif, dengan mempertimbangkan hal-hal berikut. Temperatur yang digunakan tidak terlalu tinggi untuk mencapai efisiensi energi, yaitu 600 °C hingga 700 °C. Meskipun ada dua atau lebih tahap, tahap aktivasi mencakup aktivasi fisik dan aktivasi kimia (aktivasi satu langkah). Aktivator yang digunakan berupa pereaksi kimia yang lebih mudah dan murah tersedia di pasaran dibandingkan gas yang mudah didapat dan sulit diperoleh. Teknologi berteknologi rendah menekan biaya seminimal mungkin, karena tidak ada biaya tambahan seperti pemasangan gas, pemeliharaan, konstruksi yang lebih kompleks, atau peralatan yang mahal. Produk utama dari proses aktivasi ini adalah aktivasi kimia. Ini akan memakan waktu lebih lama, tetapi menambahkan lebih banyak aktivator akan menghasilkan lebih banyak arang aktif (35%).

3. Proses Pengaktifan Arang

Pada prinsipnya arang dapat dilakukan dengan dua cara yaitu secara kimia ataupun dengan cara oksidasi gas. pengaktifan secara kimia Pada proses pengaktifan secara kimia, tahap pengarangan dan pengaktifan berlangsung dalam satu tahap. Bahan baku yang telah digiling, direndam dalam larutan pengaktif selama 12-24 jam. Setelah bahan ditiriskan kemudian dilakukan pengarangan. Pada suhu tinggi bahan pengaktif masuk di antara pelatpelat heksogonal dan kristalik-kristalik arang sehingga dapat membuka permukaan arang yang tertutup.

a. Proses persiapan Bahan Baku

Bahan baku yang digunakan adalah Brangkasan jagung yang dibeli langsung dari petani sehingga harga bahan baku yang didapat lebih murah. Brangkasan jagung yang diambil sudah langsung dibersihkan dari kotoran-kotoran dan dijemur dibawah sinar matahari langsung untuk mengurangi kadar air

yang terkandung dalam Brangkasan jagung ,dan mempermudah proses pengarang-annya. Brangkasan jagung yang telah bersih ditampung dalam storage(F-111). Dari storage Brangkasan jagung kemudian diangkut menggunakan belt conveyor (J-112) menuju ke rotary cutter(C-113) untuk dipotong hingga mencapai ukuran Brangkasan sebesar 5-8 cm. Setelah itu brangkas tersebut dimasukkan ke rool crusher (C-131) untuk dipotong dengan ukuran 3-5 cm.

b. Proses pirolisis

Proses berikutnya adalah bahan baku diangkut dengan belt conveyor (J -144) kemudian masuk ke dalam rotary kiln (B-110). Pirolisis dapat didefinisikan sebagai proses atau reaksi oksidasi yang sangat cepat antara bahan bakar (fuel) dan oksidator dengan menimbulkan panas atau nyala. Proses pembakaran padatan terdiri dari beberapa tahap seperti pemanasan, pengeringan, devolatilisasi dan pembakaran. Selama proses devolatilisasi, kandungan volatil akan keluar dalam bentuk gas seperti: CO, CO2, CH4 dan H2. Pirolisis merupakan metode pengarangan atau karbonisasi. Karbonisasi adalah proses untuk mengkonversi bahan organik menjadi arang, pada proses karbonisasi akan melepaskan zat yang mudah terbakar seperti CO, CH4, H2, metana serta zat yang tidak terbakar seperti CO2, H2O.

Reaksi kimia peruraian biomassa (Sorensen B, 2004):

```
400^{\circ}C

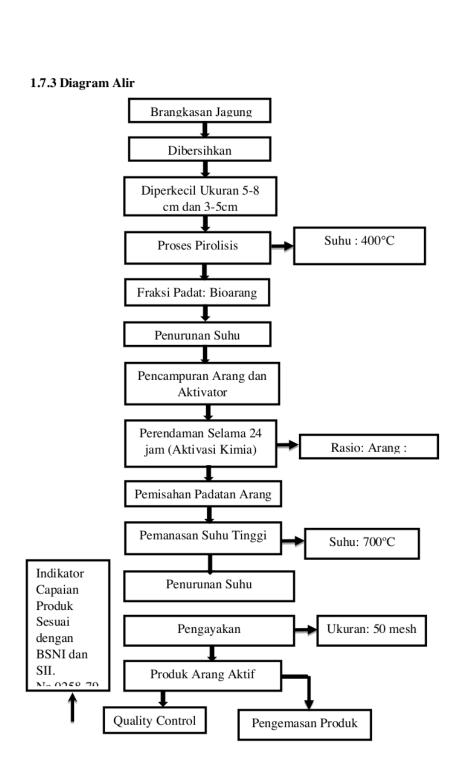
C_6H_{10}O_5 \checkmark 3H_2O + 2CO_2 + CH_4 + 3C

C_6H_{10}O_5.6C + 5H_2O_{(g)}C + CO_{2(g)} + 2CO_{(g)}

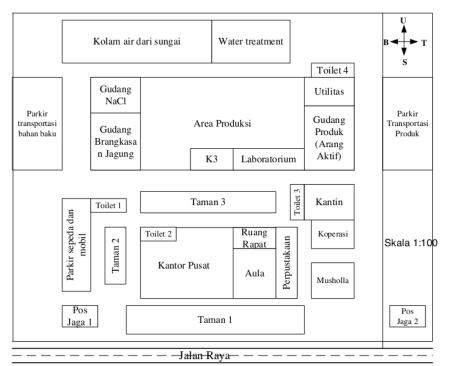
Reaksi yang terjadi pada fase evolusi gas (ullmann's, 2002):

CH_4 + H_2O \checkmark CO + 3H_2

C_{(s)} + H_2O \checkmark CO + H_2
```


Proses pirolisis bahan baku brangkasan jagung dilakukan di dalam *rotary kiln* (B-110) menggunakan teknologi *slow pyrolysis* dengan suhu 400°C selama 4 jam. Setelah proses pirolisis selesai, bioarang yang terbentuk masuk kedalam *rotary cooler*(B-120) untuk menurunkan suhu bioarang dan memadamkan nyala dari bioarang tersebut. Bioarang dingin dimasukan langsung kedalam mixer (M-130). Belerang dicampur dengan aktivator yaitu larutan NaCl dengan konsentrasi 30% dengan rasio arang dan larutan NaCl 1:4. Arang. Kemudian terjadi proses pengadukan dalam mixer (M-130) yang bertujuan agar bioarang dan aktivator tercampur dengan baik sebelum dilakukan perendaman di dalam tangki perendaman(F-141a-F141b) selama 24 jam dengan suhu 35°C.

c. Pemisahan dan Pemurnian


Bioarang telah menjadi arang aktif setelah melewati proses perendaman selama 24 jam. Arang aktif tersebut dilewatkan *Screening*(H-143) untuk memisahkan larutan NaCl dengan padatan arang. Larutan NaCl yang melewati screening(H-143) menuju ke bak perendaman kembali untuk digunakan lagi sebagai aktivator. Arang aktif yang sudah disaring kemudian diangkut dengan chain conveyor (J-22) menuju rotary kiln aktivasi melalui pemanasan suhu tinggi dengan tujuan memperluas permukaan arang aktif dan membuka pori-porinya. Pemanasan dilakukan dalam *rotary kiln* (B-140). Pemanasan dilakukan selama 75 menit dengan suhu 700°C. Kemudian arang aktif masuk kedalam *rotary cooler* (B-150) agar suhu dari arang menurun dan nyala pada arang padam. Arang aktif yang keluar dari *rotary cooler* (B-150) arang selanjutnya dimasukan kedalam Ball mill (C151) untuk dihaluskan lalu diayak menggunakan *vibrating screen* (H-153) agar didapatkan arang aktif dengan ukuran 50 mesh. Arang aktif yang sudah melewati *vibrating screen* (H-153) diangkut menggunakan screw conveyor (J-153) menuju storage (F-154) untuk dikemas dalam bungkusan kedap udara agar kualitas arang aktif terjaga serta kinerja adsorpsinya optimal.

d. Penanganan Produk

Produk arang aktif dijual dalam bentuk powder 50 mesh dan dikemas dalam kemasan kedap udara. Dalam pra rancang ini, arang aktif akan dikemas dengan karung sak kertas laminasi bekas PP (re-used) kualitas bagus dengan bobot 25 kg. Kemasan ini dipilih karena sifat penyimpanannya kedap udara serta jenis kemasan ini direkomendasikan untuk pengemasan non-food grade seperti briket arang, semen, mortar, maupun arang aktif. Jenis kemasan ini didalamnya terdapat lapisan laminasi PP sehingga didapat kemasan yang kokoh, tahan lama tapi dengan biaya ekonomis

Gambar Diagram Alir 1.7.3

Gambar 1.10.1 Lay Out Pabrik

Tabel 1.10.1 Rincian Luas Bangunan Pra Rancang Bangun Pabrik

No .	Nama Tempat	Luas (m^2)	No.	Nama T empat	Luas (m^2)
1	Pos jaga 1	8	15	Kantin	35
2	Pos jaga 2	8	16	Parkir Motor dan Mobil	52
3	Taman 1	80	17	Area Produksi	390
4	Taman 2	24	18	Ruang K3	18
5	Taman 3	57	19	Laboratorium	120
6	Toilet 1	4	20	Utilitas	300
7	Toilet 2	4	21	Koperasi	30
8	Toilet 3	4	22	Gudang Produk (AA)	300
9	Toilet 4	4	23	Gudang Nacl	150
10	Kantor Pusat	130	24	Gudang Bahan Baku	200
11	Ruang Rapat	60	25	Parkir Transportasi Bahan Baku	90
12	Aula	42	26	Water Treatment	150
13	Perpustakaan	30	27	Kolam dari Air Sungai	126

ľ			TO	ΓAL		3.643
	14	Musholla	30	29	Area Perluasan Pabrik	1.197

Emerensiana Badhe

ORIGINALI	TY REPORT			
24 SIMILAR	4% HTY INDEX	23% INTERNET SOURCES	6% PUBLICATIONS	9% STUDENT PAPERS
PRIMARY S	SOURCES			
1	www.scri			3%
2	rinjani.ur			2%
3	faizaasho	op.blogspot.com	m	2%
4	repositor	y.ub.ac.id		2%
5	docplaye			1 %
6	idoc.pub Internet Source	2		1 %
7	r2dylumi Internet Source	nescence.word	lpress.com	1 %
8	dspace.u			1 %
9	viscoche Internet Source	mical.com		1 %

10	repository.its.ac.id Internet Source	1 %
11	id.scribd.com Internet Source	1 %
12	Submitted to Universitas Bung Hatta Student Paper	1 %
13	ar.scribd.com Internet Source	1 %
14	roeslindopack.blogspot.com Internet Source	1 %
15	jkptb.ub.ac.id Internet Source	1 %
16	jurnal.um-palembang.ac.id Internet Source	<1%
17	Submitted to Universitas Tadulako Student Paper	<1%
18	www.slideshare.net Internet Source	<1%
19	Submitted to itera Student Paper	<1 %
20	publikasi.unitri.ac.id Internet Source	<1 %
21	repository.unmuhjember.ac.id Internet Source	<1%

22	jurnalmahasiswa.unesa.ac.id Internet Source	<1%
23	repository.ump.ac.id Internet Source	<1%
24	Farida Sugiester S, Yura Witsqa Firmansyah, Wahyu Widiyantoro, Mirza Fathan Fuadi, Yana Afrina, Afdal Hardiyanto. "DAMPAK PENCEMARAN SUNGAI DI INDONESIA TERHADAP GANGGUAN KESEHATAN: LITERATURE REVIEW", Jurnal Riset Kesehatan Poltekkes Depkes Bandung, 2021 Publication	<1%
25	disdikkbb.org Internet Source	<1%
26	eprints.umm.ac.id Internet Source	<1%
27	infianto.wordpress.com Internet Source	<1%
28	ejurnal.itats.ac.id Internet Source	<1%
29	id.123dok.com Internet Source	<1%
30	www.researchgate.net Internet Source	<1%
31	www.kajianpustaka.com Internet Source	

Off

Exclude quotes Off Exclude matches

Exclude bibliography Off

PAGE 15

Emerensiana Badhe			
GRADEMARK REPORT			
FINAL GRADE	GENERAL COMMENTS		
/0	Instructor		
7 0			
PAGE 1			
PAGE 2			
PAGE 3			
PAGE 4			
PAGE 5			
PAGE 6			
PAGE 7			
PAGE 8			
PAGE 9			
PAGE 10			
PAGE 11			
PAGE 12			
PAGE 13			
PAGE 14			